Theoretical Femtosecond Physics理论飞秒物理——强激光场中的原子和分子(影印版)
定 价:39 元
丛书名:中外物理学精品书系·引进系列
当前图书已被 1 所学校荐购过!
查看明细
- 作者:Theoretical Femtosecond Physics理论飞秒物理——强激光场中的原子和分子(影印版)
- 出版时间:2013/8/21 16:06:00
- ISBN:9787301226872
- 出 版 社:北京大学出版社
- 中图法分类:O43
- 页码:字 数:
- 纸张:胶版纸
- 版次:页 数:
- 开本:16K
利用含时薛定谔方程的近似或数值解,本书非微扰地分析了光与物质的相互作用。在本书中,光场被看作是经典的。本书还讨论了从原子的电离到分子的电离和离解范围内的各种物理现象,以及化学反应的控制等等。而使用短脉冲强激光的实验的理论背景也在本书中给出。在附录中还包含了一些计算细节。本书适合光学、凝聚态物理、原子物理等领域的研究者阅读,也可用于这些方向的研究生做参考。
《理论飞秒物理——强激光场中的原子和分子(影印版)》由格罗斯曼著,本书是中外物理学精品书系之一,这套书系内容丰富,涵盖面广,可读性强,其中既有对我国传统物理学发展的梳理和总结,也有对正在蓬勃发展的物理学前沿的全面展示;既引进和介绍了世界物理学研究的发展动态,也面向国际主流领域传播中国物理的优秀专著。可以说,“中外物理学精品书系”力图完整呈现近现代世界和中国物理科学发展的全貌,是一部目前国内为数不多的兼具学术价值和阅读乐趣的经典物理丛书。
Part I Prerequisites
1 A Short Introduction to Laser Physics
1.1 The Einstein Coefficients
1.2 Fundamentals of the Laser
1.2.1 Elementary Laser Theory
1.2.2 Realization of the Laser Principle
1.3 Pulsed Lasers
1.3.1 Frequency Comb
1.3.2 Carrier Envelope Phase
1.3.3 Husimi Representation of Laser Pulses
1.A Some Gaussian Integrals
References
2 Time-Dependent Quantum Theory
2.1 The Time-Dependent Schrodinger Equation
2.1.1 Introduction
2.1.2 Time-Evolution Operator
2.1.3 Spectral Information
2.1.4 Analytical Solutions for Wavepackets
2.2 Analytical Approaches
2.2.1 Feynman's Path Integral
2.2.2 Semiclassical Approximation
2.2.3 Time-Dependent Perturbation Theory
2.2.4 Magnus Expansion
2.2.5 Time-Dependent Hartree Method
2.2.6 Quantum-Classical Methods
2.2.7 Floquet Theory
2.3 Numerical Methods
2.3.1 Orthogonal Basis Expansion
2.3.2 Split-Operator FFT Method
2.3.3 Alternative Methods of Time-Evolution
2.3.4 Semiclassical Initial Value Representations
2.A The Royal Road to the Path Integral
2.B Variational Calculus
2.C Stability Matrix
2.D From the HK- to the VVG-Propagator
References
Part II Applications
3 Field Matter Coupling and Two-Level Systems
3.1 Light Matter Interaction
3.1.1 Minimal Coupling
3.1.2 Length Gauge
3.1.3 Kramers-Henneberger Transformation
3.1.4 Volkov Wavepacket
3.2 Analytically Solvable Two-Level Problems
3.2.1 Dipole Matrix Element
3.2.2 Rabi Oscillations Induced by a Constant Perturbation
3.2.3 Time-Dependent Perturbations
3.2.4 Exactly Solvable Time-Dependent Cases
3.A Generalized Parity Transformation
3.B Two-Level System in an Incoherent Field
References
4 Single Electron Atoms in Strong Laser Fields
4.1 The Hydrogen Atom
4.1.1 Hydrogen in Three Dimensions
4.1.2 The One-Dimensional Coulomb Problem
4.2 Field Induced Ionization
4.2.1 Tunnel Ionization
4.2.2 Multiphoton Ionization
4.2.3 ATI in the Coulomb Potential
4.2.4 Stabilization in Very Strong Fields
4.2.5 Atoms Driven by HCP
4.3 High Harmonic Generation
4.3.1 Three-Step Model
4.3.2 Odd Harmonics Rule
4.3.3 Semiclassical Explanation of the Plateau
4.3.4 Cutoff and Odd Harmonics Revisited
4.A More on Atomic Units
……
References
References
Index
<p>Part I Prerequisites<br /> 1 A Short Introduction to Laser Physics <br /> 1.1 The Einstein Coefficients<br /> 1.2 Fundamentals of the Laser<br /> 1.2.1 Elementary Laser Theory<br /> 1.2.2 Realization of the Laser Principle<br /> 1.3 Pulsed Lasers <br /> 1.3.1 Frequency Comb <br /> 1.3.2 Carrier Envelope Phase <br /> 1.3.3 Husimi Representation of Laser Pulses <br /> 1.A Some Gaussian Integrals<br /> References <br /> 2 Time-Dependent Quantum Theory <br /> 2.1 The Time-Dependent Schrodinger Equation<br /> 2.1.1 Introduction<br /> 2.1.2 Time-Evolution Operator <br /> 2.1.3 Spectral Information<br /> 2.1.4 Analytical Solutions for Wavepackets<br /> 2.2 Analytical Approaches<br /> 2.2.1 Feynman's Path Integral<br /> 2.2.2 Semiclassical Approximation<br /> 2.2.3 Time-Dependent Perturbation Theory <br /> 2.2.4 Magnus Expansion<br /> 2.2.5 Time-Dependent Hartree Method<br /> 2.2.6 Quantum-Classical Methods <br /> 2.2.7 Floquet Theory<br /> 2.3 Numerical Methods<br /> 2.3.1 Orthogonal Basis Expansion<br /> 2.3.2 Split-Operator FFT Method <br /> 2.3.3 Alternative Methods of Time-Evolution <br /> 2.3.4 Semiclassical Initial Value Representations <br /> 2.A The Royal Road to the Path Integral <br /> 2.B Variational Calculus <br /> 2.C Stability Matrix <br /> 2.D From the HK- to the VVG-Propagator <br /> References <br /> <br /> Part II Applications<br /> 3 Field Matter Coupling and Two-Level Systems<br /> 3.1 Light Matter Interaction<br /> 3.1.1 Minimal Coupling<br /> 3.1.2 Length Gauge<br /> 3.1.3 Kramers-Henneberger Transformation <br /> 3.1.4 Volkov Wavepacket<br /> 3.2 Analytically Solvable Two-Level Problems <br /> 3.2.1 Dipole Matrix Element <br /> 3.2.2 Rabi Oscillations Induced by a Constant Perturbation<br /> 3.2.3 Time-Dependent Perturbations <br /> 3.2.4 Exactly Solvable Time-Dependent Cases <br /> 3.A Generalized Parity Transformation<br /> 3.B Two-Level System in an Incoherent Field<br /> References <br /> 4 Single Electron Atoms in Strong Laser Fields <br /> 4.1 The Hydrogen Atom<br /> 4.1.1 Hydrogen in Three Dimensions <br /> 4.1.2 The One-Dimensional Coulomb Problem <br /> 4.2 Field Induced Ionization<br /> 4.2.1 Tunnel Ionization <br /> 4.2.2 Multiphoton Ionization<br /> 4.2.3 ATI in the Coulomb Potential<br /> 4.2.4 Stabilization in Very Strong Fields<br /> 4.2.5 Atoms Driven by HCP<br /> 4.3 High Harmonic Generation <br /> 4.3.1 Three-Step Model <br /> 4.3.2 Odd Harmonics Rule<br /> 4.3.3 Semiclassical Explanation of the Plateau <br /> 4.3.4 Cutoff and Odd Harmonics Revisited <br /> 4.A More on Atomic Units <br /> ……<br /> References<br /> References <br /> Index</p>